MathValue

홈으로 >   팩토리알   야구의 타순을 정해보자   야구의 타순   야구 타순과 팩토리알   

심화 학습  


타순과 팩토리알의 이해


수 많은 경우들

야구의 타순을 정하는 경우에 있어, 그 값은 무려 362,880 입니다.

놀랍습니다!

그냥 평범한 야구 타순을 정하는 것일 뿐인데

그 경우들의 값이 362,880 이라니 말입니다.

그럼 어떻게 이 값을 구할 수 있을까요? (계속)


#8:

8 번 타자를 선발할 때에, 2 명의 선수들 중에서 8 번 타자를 선발 합니다.

그래서 2 명의 선수들을 선발할 수 있으므로 이 때 경우 數는 2 입니다.

이제 1 ~ 8 번 타자를 선발하는 경우를 살펴 봅시다.

1 번 타자는 9 명 가운데 1 명 선발할 수 있습니다.
2 번 타자는 (이미 선발한 1 명을 제외한)
8 명 가운데 1 명 선발할 수 있습니다.

3 번 타자는 (이미 선발한 2 명을 제외한)
7 명 가운데 1 명 선발할 수 있습니다.

4 번 타자는 (이미 선발한 3 명을 제외한)
6 명 가운데 1 명 선발할 수 있습니다.

5 번 타자는 (이미 선발한 4 명을 제외한)
5 명 가운데 1 명 선발할 수 있습니다.

6 번 타자는 (이미 선발한 5 명을 제외한)
4 명 가운데 1 명 선발할 수 있습니다.

7 번 타자는 (이미 선발한 6 명을 제외한)
3 명 가운데 1 명 선발할 수 있습니다.

그리고 8 번 타자는 (이미 선발한 7 명을 제외한)
2 명 가운데 1 명 선발할 수 있습니다.

그렇기 때문에, 1 ~ 8 번 타자를 선발하는 경우에 있어서

그 경우 數는 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 = 362,880 입니다.


#9:

9 번 타자를 선발할 때에, 1 명의 선수들 중에서 9 번 타자를 선발 합니다.

그래서 1 명의 선수들을 선발할 수 있으므로 이 때 경우 數는 1 입니다.

이제 1 ~ 9 번 타자를 선발하는 경우를 살펴 봅시다.

1 번 타자는 9 명 가운데 1 명 선발할 수 있습니다.
2 번 타자는 (이미 선발한 1 번을 제외한)
8 명 가운데 1 명 선발할 수 있습니다.

3 번 타자는 (이미 선발한 1, 2 번 타자들을 제외한)
7 명 가운데 1 명 선발할 수 있습니다.

4 번 타자는 (이미 선발한 1 ~ 3 번 타자들을 제외한)
6 명 가운데 1 명 선발할 수 있습니다.

5 번 타자는 (이미 선발한 1 ~ 4 번 타자들을 제외한)
5 명 가운데 1 명 선발할 수 있습니다.

6 번 타자는 (이미 선발한 1 ~ 5 번 타자들을 제외한)
4 명 가운데 1 명 선발할 수 있습니다.

7 번 타자는 (이미 선발한 1 ~ 6 번 타자들을 제외한)
3 명 가운데 1 명 선발할 수 있습니다.

8 번 타자는 (이미 선발한 1 ~ 7 번 타자들을 제외한)
2 명 가운데 1 명 선발할 수 있습니다.

그리고 9 번 타자는 (이미 선발한 8 명을 제외한)
1 명 가운데 1 명 선발할 수 있습니다.

그리하여, 1 ~ 9 번 타자를 선발하는 경우에 있어서

그 경우 數는 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1= 362,880 입니다.


이것을 간단하게 정리하면 이렇습니다.
각각의 경우에 있어서 그 경우 數는 들은

  * 1 번 타자를 선발할 때: 9

  * 2 번 타자를 선발할 때: 8

  * 3 번 타자를 선발할 때: 7

  * 4 번 타자를 선발할 때: 6

  * 5 번 타자를 선발할 때: 5

  * 6 번 타자를 선발할 때: 4

  * 7 번 타자를 선발할 때: 3

  * 8 번 타자를 선발할 때: 2

  * 9 번 타자를 선발할 때: 1

이었습니다.


이제 이 경우 數는 들을 서로 곱하면 그것이 바로 야구 타순을 정하는 number of cases 입니다.

결국 이 값의 결과는 9! 의 값과 일치합니다.

아, 그러군요. 야구타순을 정하는 문제는 결국 9! 의 값을 구하는 것과 같군요.

1   2
   

심화 학습 : 더 알아보기

팩토리알   야구의 타순을 정해보자   야구의 타순   야구 타순과 팩토리알   

© 2024 mathvalue.net